Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers.
نویسندگان
چکیده
Estrogen exposure is considered a significant risk factor for breast cancer development. Estrogen receptor (ER) alpha is expressed at low levels in normal epithelia, and its expression is dramatically up-regulated as transformation progresses during mammary hyperplasia and adenocarcinoma development. The mechanism(s) driving ERalpha up-regulation during mammary tumorigenesis remains unclear. Caveolin-1 (Cav-1) is the structural protein of plasmalemmal invaginations, termed caveolae, which functions as a tumor suppressor gene. Interestingly, Cav-1 dominant-negative mutations are exclusively found in ERalpha-positive breast cancer samples. In support of these clinical findings, ERalpha expression is increased in Cav-1 (-/-) null mammary epithelia, and estrogen stimulation further enhances the growth of Cav-1-deficient three-dimensional epithelial structures. These phenotypes correlate with augmented levels of cyclin D1. In addition, Cav-1 gene inactivation induces the accumulation of a cell population with the characteristics of adult mammary stem cells. Primary cultures of Cav-1 (-/-) mammary epithelial cells exhibit premalignant changes, such as abnormal lumen formation, epidermal growth factor-independent growth, defects in cell substrate attachment, and increased cell invasiveness. Thus, Cav-1 gene inactivation promotes premalignant alterations in mammary epithelia and induces increased ERalpha expression levels and the up-regulation of cyclin D1. As tumor formation is a multihit process, Cav-1 mutations that occur during the early stages of mammary transformation may be a critical upstream/initiating event leading to increased ERalpha levels.
منابع مشابه
Canine Mammary Gland Cancer Stem Cell and its Potential Role in Malignant Biologic Behavior
BACKGROUND:Canine mammary gland cancers are the most prevalent malignancies in dogs. There are different challenges regarding management of these cancers in dogs and human, one hypothesis is related to small cellular subset of tumor mass called cancer stem cell. These cells are therapy resistant and cause metastasis and relapse even after primary successful treatment. The well-identified phenot...
متن کاملEffects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کاملLunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like breast cancer.
Basal-like breast cancers (BLBC) express a luminal progenitor gene signature. Notch receptor signaling promotes luminal cell fate specification in the mammary gland, while suppressing stem cell self-renewal. Here we show that deletion of Lfng, a sugar transferase that prevents Notch activation by Jagged ligands, enhances stem/progenitor cell proliferation. Mammary-specific deletion of Lfng indu...
متن کاملتأثیر هورمون استروژن بر میزان پروتئین p53 در رده سلولی T47D سرطان پستان
Background: Breast cancer is one of the most common cancers in women. Nearly 30% of breast cancers are hormone-dependent, and these hormones comprising estrogens influence progression of breast cancers. It is now widely recognized that p53 may be the most frequently mutated protein in breast cancer. High levels of p53 protein are a common feature of many human malignant cancers. Given that, T47...
متن کاملRepression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells.
Mammary stem cells are undifferentiated epithelial cells, which initiate mammary tumors and render them resistant to anticancer therapies, when deregulated. Diets rich in fruits and vegetables are implicated in breast cancer risk reduction, yet underlying mechanisms are poorly understood. Here, we addressed whether dietary factors selectively target mammary epithelial cells that display stem-li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 66 22 شماره
صفحات -
تاریخ انتشار 2006